If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+12x-224=0
a = 1; b = 12; c = -224;
Δ = b2-4ac
Δ = 122-4·1·(-224)
Δ = 1040
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1040}=\sqrt{16*65}=\sqrt{16}*\sqrt{65}=4\sqrt{65}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-4\sqrt{65}}{2*1}=\frac{-12-4\sqrt{65}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+4\sqrt{65}}{2*1}=\frac{-12+4\sqrt{65}}{2} $
| v/7.68=3 | | (5x+6)(−8x−4)=(−20x−24)(−5x+2) | | Y+1=2/3(x-12) | | 21=108+3x | | 3d-10=5(1-4) | | -25-x=-9x-1 | | 2x-69=-20 | | x^2+6x-224=0 | | M=-3n=-2 | | 10+a+44=2a | | 14j=16 | | -5x+20=100+3x | | 21x-5-13x+4=18x-6-10x+15 | | 3+45(2-b)=7 | | w+-2=-5 | | 2x+9-4x=17-18x+16x-8 | | 47+n+8=141 | | 6x-19=25x-14 | | X^2-30x+350=0 | | -6(2x-16)=-1/2(-12x-36) | | 5x+20=44+3x | | 9s-3=5+s | | 17+v/4=19 | | 5x-18=x+2 | | y/5-11=2 | | 9d=–5.4d= | | 2x+15=6x+31 | | Y-5=1/2(x+4) | | 3x+25=2(3x-10) | | -13x+39=-4x+5 | | 12n-25=35 | | k/4+12=20 |